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ABSTRACT

One of the difticulties in designing controllers for infinite-dimensional systems arises from

attempting to calculate a state for the system. In this paper it is shown that Galerkin

type approximations can be used to design controllers which will perform as designed when

implemented on the original infinite-dimensional system. No assumptions, other than those

typically employed in numerical analysis, are made on the approximating scheme.

1Part of this research was done while the author was with the Department of Electrical Englneerlng_

University of"Waterloo, Waterloo, Ontario, N2L 3G1. This research was also supported by the National
Aeronautics and Space Administration under NASA Contract No. NAS1-18605 while the author was in
residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley
Research Center, Hampton, VA 23665.





1. Introduction

There are computational difficulties, apart from the theoretical problems, to designing

controllers for a class of systems whose dynamics are described by partial differential equa-

tions. Unlike finite-dimensional linear dynamical systems, which are often easily solved for

the state of the system, a closed form solution for the state of an infinite-dimensional system

can be computed only in the simplest of situations. This is due to the difficulty of solving a

partial differential equation. In general, it is necessary to use a numerical approximation to

the state of the system when designing a controller.

This leads immediately to several questions regarding robustness. Is the use of finite-

dimensional approximations a validtechnique when designing controllers for

infinite-dimensional systems? If so, which approximation methods can be used to design

controllers which will perform as designed when implemented on the actual system, and how

high an order is required?

A wide class of projection methods, which includes mode truncation and finite element

Galerkin techniques, is considered in this paper. It is shown that, if the order of an approxi-

mation to a system is sufficiently high, then the approximating system is stabilizable, and a

controller designed using the approximation will stabilize the original system. Furthermore,

the closed loop response of the system will be close to the the closed loop response of the

approximating system. This result is independent of the technique used for controller design.

Other researchers have studied convergence of solutions.to the Pdccati equation leg., 9,

10, 12], but have assumed either uniform stability or stabilizability of the approximating

systems. Balas [1, 2] assumes convergence of a stabilizing feedback control. However, the

assumptions on an approximation scheme required for the results in this paper to hold are

not stronger than those typically imposed on any numerical technique used in computer

analysis. The key assumption is that the original infinite-dimensional system is stabilizable.

We consider semigroup control systems of the following form:

_(_)-- Ax(_)+ B_(Z),

.y('_)= Ore(t), (i.0)

x(O)=xo xoED(A) cX.

A satisfies the Hille-Yosida theorem on the Hilbert space X and hence generates a strongly

continuous (Oo)-semigroup T(t) on X. Control and observation are assumed to be bounded

_.e.!

B e B(R",X)and o • B(X,R").



This formulation includes a wide class of systems; in particular many problems concerning

vibrations in structures with point sensing and actuation can be placed within this frame-

work.

The inner product on X is indicated by (,) and the corresponding norm by, II II. Inner

products on different spaces are not distinguished as the context indicates which space is

meant. We use the following definiti0nof=in-ternal stability.

Definition 1.1: The Co-semigroup T(t) is a-stable if there exist constants M and a > a

such that ][T(t)]] < Me -'_ for all t _> 0.

The possibility of a > 0 is included to allow for situations where the purpose of con-

troller design is for purposes other than simple stability (i.e., a = 0). For instance, while

vibrating structures are generally open-loop stable, the settling time of these systems is often

unacceptably large.

Several definitions will be required.

Definition 1.2: The pair (A, B) is a-stabilizable if there exists a bounded linear operator

K : X --, R "_ such that A - BK generates a a-stable semigroup.

Definition 1.3: The pair (A, C) is a-detectable if there exists a bounded linear operator

F : R p --* X such that A- FC generates a a-stable semigroup.

Definition 1.4: The system (,4, B, C) is jointly a-stabilizable/detectable if (A, B) is

a-stabilizable and (A, C) is a-detectable.

Define the linear space A to consist of functions of the form

OO

h = ho(t)+ ]E h,s(t- t,). (1.1)
i=1

where h,, E LI[O, oo) and the sequence {hi} is absolutely summable. The norm of a function

in A is

Ilhll = Ih.(t)ldt + Ih,I < c¢. (1.2)
i=O

A SISO system is said to be L_-stable or bounded-input bounded-output (BIBO) stable

if and only if its impulse response belongs to the set A. Moreover, the gain of an BIBO-stable

system is equal to the norm of its impulse response in the set A [6]. The symbol .& is used

to denote the set of Laplace transforms of distributions in A.

Define M(A) to be the set of matrices with elements in A. A MIMO system is L_-stable

if and only if its impulse response belongs to M(A). The L_-gain of a m x p matrix H is
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the induced norm definedby

p

[[HIIA:: max _ llh,_llA.
s j=1

Consider the common situation where the system is already stable and the aim of con-

troller design is to improve its transient response. Let us specify a real number _r > 0, which

is the minimum acceptable stability margin. We define a system to be cr - L=-stable if and

only if its impulse response f(t) is of the form (1.1), and instead of (1.2) satisfies the more

stringent conditions

_--] [hi[ exp(ati ) < oo, [h_(t)exp(cTt)ldt < oo. (1.3)
i=O

Let A, denote the set of all distributions satisfying, and let .&, denote the set of Laplace

transforms of distributions in A,.

We now define precisely what is meant by external stabilization of a system. Suppose

P is a given system, for which we wish to design a controller O, arranged in the familiar

feedback configuration shown in Figure 1. It is readily seen that the 2 x 2 transfer matrix

H(P, O) which maps the pair (ul, u2)into the pair (el, e2) is given by

(I + Po) -1 -P(I + oP) -1
H(P,c) =

o(I + Po) -, (z+ oP)-,

The feedback system, or alternatively the pair (P, O), is said to be stable if each of the four

elements in the above matrix belongs to the set S of stable transfer functions. Definition

of S depends upon the application. Thus the closed loop system is BIBO-a-stable if and

only if all four elements belong to A,¢. It is important to note that the present definition of

stability is symmetric in P and O. Thus P stabilizes O if and only if O stabilizes P.

u2

Figure 1. Feedback System
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The problem is to design a controller for the system (1.0) which achieves such objectives as

external stability. Since this generally requires knowledge of the system state, the difficulty

in solving partial differential equation systems and many other semigroup systems means

that an approximation to the state must be used. In the next section we define a class of

approximation techniques known variously as Galerkin and projection techniques.

2. Approximation Technique

Suppose we have a sequence of finite-dimensional subspaces Xh with Xh_ C Xh2 for

hi > h2. We assume that Xh C D(A). When finite elements are used as a basis for the

approximating subspace Xh, then A should be understood in its weak or extended sense [7,

20]. Define Phz as the orthogonal projection of x E X onto the finite-dimensional subspace

Xh. The parameter h converges to zero as the order of the approximation is increased. Since

all norms on Xh are equivalent, we wiU assume that the norm on X_, is that inherited from

X. Since Ph is an orthogonal projection, it follows that

IIPhxll_<IIxll.

The approximating system is (As, Bh, Cs) where

Bh := PhB

oh := Clx 

and Ah is the bounded linear operator defined by

Ahzh = PhAzh for all zh G Xh.

In commo n with [31, the operators Ah, Bh, Oh and the semigroup Ta(t) generated by Ah

are only defined on Xh.

We make the following assumptions:

A1) The projection operators Ph converge strongly to the identity on the Hilbert space

X. That is, for all x E X

lim IlPh - xl[ = 0.
k--*0

A2) The approximation scheme approximates the solution space not the operator A, in

that z E Xh implies Az E Xh so that

Ahz = Az for z E Xh.

Modal truncation and many applications of the finite element method satisfy this assumption.
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A3) A core C of a closed operator A is a linear space contained in the domain of A with

the property that the set of elements (z, Az), z E C is dense in the graph G(A) of the

operator A ([15] pg. 166). In other words, if we define an operator L to be the restriction of

A to C so that

D(L) = C

Lz = Az, z E C

then A is the closure of L, or equivalently, G_-) = G(A).

We will assume that there exists a core C for A such that

lim IIPhAx- AhPhxll- 0, forallx e c. (2.1)
h---,0

Such an approximation scheme is said to be consistent.

We will further assume that the semigroups Th(t) generated by Ah are uniformly bounded,

that is, there exist real numbers H, M > 1 and w such that

IITh(_)ll _<Me '_t for all h < g. (2.2)

(Uniform boundedness of the approximate semigroups is generally referred to as "stability"

in the numerical analysis literature.) Consistency and uniform boundedness are required for

convergence of the approximation [e.g., 16, 18, 20] i.e., for all e > 0, t > 0 and for all z E X

there exists H such that

IIPhT(_)_- Th(_)Ph_ll< _ forall_ e [0,t] and h < H.

Assumptions (A1)-(A3) are satisfied by typical approximation methods such as finite

element techniques and modal truncation.

In subsequent sections the original semigroup control system will be assumed stabilizable

and/or detectable. However, no assumptions about the stabilizability or detectability of

the approximations are made. In the next section it is shown that stabilizability of the

approximating systems can be deduced from stabilizability of the original semigroup control

system.

3. Stabilizability of Approximating Systems

We require the following theorem which guarantees the existence of a solution to the

infinite-dimensional Riccati equation if the pair (A, B) is stabilizable.

Theorem 3.1: [17] Let A and B be as defined above and let L, Q be self-adjoint and

positive definite bounded linear operators. If there exists a solution u* to the optimal control
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problem with the quadratic cost function

]0"[(L_(t), x(t)) + (Qu(_),u(t))]d_ (3.1)J(u)

which satisfies the condition that J(u*) be finite, then there exists an unique self-adjoint and

non-negative solution IIE L(X, X) to the infinite-dimensional Riccati equation

A*II ÷ HA - IIBQ-1B*II + L = ® (3.2)

where ® is the zero operator. Let K = Q-1B*II; then A - BK generates an exponentially

stable Co-semigroup. []

Clearly an admissible solution exists if and only if (A_ B) is stabilizable.

Theorem 3.2: Assume we have a semigroup control system (2.0) and an approximation

scheme satisfying assumptions (A1)-(A3) in Section 2. Assume that the system is stabiliz-

able. Then, for sufficiently small h, the approximating systems are stabilizable i.e., there

exists an operator Kh such that Ah - BhKh generates an exi_onentially stable semigroup on

xh.

Proof: For each approximating subspace, define a self-adjoint operator IIh : Xa _ Xh

as

IIh := PhIIPh

where II is the solution to the Riccati equation (3.2). It will be shown that, for small enough

h, IIh solves the finite-dimensional Riccati equation

A_Hh + HhAh - HhBhQ-1B_Hh + Lh = Oh

where Oh is the zero operator in B(Xh, Xh) and Lh is a self-adjoint positive definite operator

(as yet undetermined)in B(Xh, Xh).

Define the operator R(Lh) : Xh "* Xh by

R(Lh) = A_IIh ÷ nhAh - IIhBhq-lB_IIh ÷ Lh

where Lh e B(Xh, Xh) is as yet unspecified. Let us calculate a representation for R(Lh)

with respect to some basis {¢J7= 1 for Xh. Using (3.2), we have

(¢,,R(La)¢_) = (¢,, Q(h)¢j) + (¢i, Lhej) - (¢,, Lej)

where

Q(h) := HBQ-IB*n- PhIIPhBQ-_B*PhHPh.



Now define Lh : Xh ---} Xh as

Lhzh = Lzh -- Q(h)xh for all zh E Xh.

Then R(Lh) = e on B(Xh, Xh) since

(¢i,R(Lh)¢j) = 0 for all ¢i,¢j.

In order to show that Hh solves a Riccati equation for (Ah, Bh) for small enough h,

it remains only to prove that Lh is self-adjoint and positive definite for small h. Now,

limb--.0 I](I - Ph)BII = 0 since B operates on a finite-dimensional space. It follows that [22,

Theorem 4.14]

lira IlQ(h)ll - O.
h--,O

The fact that Lh is self adjoint follows easily from the definition of Q(h). Since L is positive

definite and self-adjoint we can choose H so that for all h < H

(xh,Lhxh) > d(xh, xh)

for some c > 0. Thus Lh is self-adjoint and positive definite for all h < H, and Hh := PhHPh

solves the Riccati equation for (Ah, Bh) with weights Q and Lh if h is sufficiently small.

Defining Kh := Q-1B_,Hh, Ah - BhKh generates a stable semigroup on Xh for h < H. []

Banks and Kunisch [3] derived a similar result for parabolic systems using different as-

sumptions. Rosen [19] considered the problem of convergence of solutions to approximating

Riccati equations. However he considers a much smaller class of problems: his proof applies

to cases where the open loop system is stable and H is a Hilbert-Schmidt operator. Although

the result given here is weaker in that convergence of Hh to H in an operator norm is not

shown, the theorem is considerably more general.

The following corollary is a consequence of the two results above.

Corollary 3.2a: Assume that (A, B) is a-stabilizable and let H be the solution to

the Riccati equation for (A + aI, B) with weights Q and R as in equation (3.2). Define

Hh := Pt, HPh and let Kh = Q-I B_,Hh. Then for sufficiently small h, Ah - BhKh generates a

a-exponentially stable semigroup on Xh. []

The results above for a-stabilizable systems have obvious extensions to a-detectable

systems since (A, C) is a-detectable if and only if (A', C*) is a-stabilizable.

Theorem 3.3: Let (A, B, C) be a semigroup control system and suppose we have an ap-

proximation scheme which satisfies assumptions (A1)-(A3) of Section 2. Assume furthermore

that (A, B) is a-stabihzable. Choose H E B(X, X) such that H solves the Riccati equation
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(3.2). DefineK := Q-1B*II and let S(t) to be the semigroup generated by A- BK. Simi-

larly, define Kh := Q-1B_,PhIIPh and let 5'h(t) be the semigroup generated by Ah - BhKh.

Then Sh(t) converges to S(t) uniformly on bounded intervals; i.e., for all e > 0,t > 0 and

for all = E X there exists H such that

I]Phs(r)=- Sh(_)Ph=l[< _ forall _ _ [0,t]and h < H.

Proof:

IlBhKhll< IIBQ-1B.II IIIIII:= c.

Using (2.2) and [i8, Theorem 3.1.1] it follows that there exist real numbers H,M > 1 and

w such that

llSh(t)l I < Me ('+M°)= for an t _>0, for all h < H. (3.3)

Define Ao := A - BK and A_ := Ah - BhKh. Let C be the core for A such that the

consistency condition (2.1) is satisfied. Since BK is a bounded operator, C is also a core for

Ao. The resolvent of (AI- Ao)is bounded for Re(A) > -cr, and so (AI- Ao)C is dense in

X for ReA > -a. It follows that for every z C C, we have

lim IIA,,,,P,,=- PhAo=ll< lira IIP,,BQ-_B.(P,,nP,,- II)=11= 0.h--*0

In order to show convergence of {Sh} to S it necessary to introduce a semigroup which is

defined on all of X. Define ,2,do = Ah,,Ph. Since .2,h,, is a bounded linear operator it generates

the Co-semigroup ,{h(t) defined by

&(t) Atk k = *_.ALPh= Sh= _;t,_ = E (*)P..
= k=O "

Since II&(t)ll< IIS_(t)ll, &(t) _so satisfies (313). Now, for z E C, we have

lim liar= - Anti< lira [IA_,Phz -- PhAozll + [IPhAox-- Ao=l[.
h-*O -- h--+O

The first term was shown above to tend to zero . The second term converges to zero since

Ph converges strongly to the identity. It follows that

lira sup ll&(O= - S(*)=ll = 0 for all= _ X, for all _" > 0
h-*0 O<t<*"

by the Trotter-Kato Approximation Theorem [18, Theorem 4.5]. Therefore, for aal z

X, r >_ O,

iim sup IlSt,(t)Phx - P,,S(t)zI[ - O.
h--*O 0<t<_"

[]
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The following theorem is now immediate.

Theorem 3.4: Suppose that the system (A, B, C) is stabilizable and that assumptions

(A1)-(A3) hold. Assume also that the approximation scheme also satisfies the additional

condition (A4):

lim sup IlT;(t)Phz - PhT*(t)z H= 0.
h---*O 0<t<_r

Then for sufficiently small h, the Riccati equation

A_Trh "4- 7rhAh -- lrhBhQ-1B_,Trh + PhLPh = Oh (3.4)

has a unique non-negative self-adjoint solution 7rh . The sequence of operators _ra converge

strongly to the solution to the exact equation (3.2). Define the optimal feedback operators

K_ := R-1B_,Hh and K := R-I BII; the semigroup generated by Ah -- BhKh converges to

the semigroup generated by A - BK.

Proof: By assumption, hypotheses (H1)-(H2) in [121 are satisfied. Since Theorem 3.3

implies uniform stabilizability/detectability it follows that the sequence of solutions to the

approximate Pdccati equations are bounded by some real M1 [12]. Since {Trh} E B(H,H)

the sequence contains a weakly convergent subsequence. It is clear that the limit of this

subsequence is also self-adjoint and non-negative. In fact, the limit is the solution to the

exact Riccati equation, II [Theorem 6.7, 8]. A proof identical to that of [Theorem 6.9, 8]

yields the remainder of the result. []

The fourth assumption can easily be shown to hold for a wide class of problems. How-

ever, while assumptions (A1)-(A3) are almost always satisfied by a numerical scheme which

is satisfactory for approximation purposes, (A4) may not be satisfied. This can lead to

unsatisfactory controller design. An example of this situation is discussed in [4].

4. Convergence in the Graph Topology

The graph and gap topologies [22, 23] arose from a need to define convergence of possibly

unbounded operators. The basic idea was outlined in Kato [15]. If M, N are closed linear

subspaces of a Banach space X then 6(M, N) is the smallest number 6 such that

6 > dist(u,N) = inf ]lu -v][ for all u e M. (4.1)
-- yEN

The gap between M and N is defined by

_(M, N) := max(6( M, g), 6( N, M)).



If S and T are closed operators from X to Y then the gap between their graphs as closed

subspaces of X × Y is well defined. The difficulty in defining a gap for unstable systems is

that the plant may not be represented by a mapping between two Banach spaces. However,
i

some bounded inputs u, will be mapped to bounded outputs Y. Let U be the set of stable

inputs and outputs and let P be the impulse response of a scalar plant . We will assume

that U is a Banach space. The symbol "*" denotes convolution. Define

Du := {u E U such that Y E U}

and the operator

PU * 't/, := P • 'l/,,

with domain Du. Then the graph of Pu is

G(Pu) = {(u,V), V = P ,u,u E Du}.

It is easy to show that O(Pu) is closed if P is a closed operator. The graph of a plant is

now defined to be the set of bounded (in the appropriate sense) input-output pairs, i.e.,

Go(P) = G(Pu) = {(u,y) 6 U n'+p, y P • u}.

In the case of BIBO stability,

G_(P) = {(u,y) 6 L_ +v, }.

Define the gapbaween operators as

d(Pl,P,) = $(Gv(P1),G.(P,)).

With this metric the space of closed operators from U to U, C(U, U) becomes a metric

space. Convergence of a sequence Pn ---* P is defined by d(P,,, P) --* 0. If a sequence of

plants {Pi} are stable, then convergence in norm tO P is equivalent to convergence in gap.

The topology induced by the metric d(P1,1'2) is thus an appropriate generalization of the

uniform topology to unstable piants.

Note that the above definition of "stable graphs" includes the graphs of non-causal plants.

A more useful topology for our purposes, which considers only linear causal plants, can be

obtained through the frequency domain approach of Vidyasagar [22]. Let the set of stable

plants S be .A, P a plant with a right coprime factorization (N, D) over _t. Define (_(P)

to be the Laplace transform of elements of G_(P). Then

(_(P) := {(¢z, ND-lC_),u 6 L_}
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or

Gs(P) = {(D_,N_),z 6 L_}.

The graph _,opology for unstable plants is defined in [22] using right coprime factorizations

(r.c.f.'s). Essentially, a basic neighborhood in the graph topology of a plant with a r.c.f.

(No, Do) is the set of all plants with a r.c.f. (N, D) where N is close to No in norm and

D is close to Do. Define S to be the usual algebra of stable rational functions. For finite-

dimensional plants the graph topology is the topology induced on the quotient space SiS

by the set of stable functions, S. Further details can be found in [22]. Zhu [24] presents a

generalization Of the graph and gap topologies to subsets of general quotient fields. Here,

we consider only a particular set.

Callier and Desoer [5] define a quotient algebra of transfer functions of distributed systems

which is useful for studying control of semigroup systems.

We say that a transfer function f in/k is bounded away from zero at infinity if for every

sequence {s_} with Re(s) >_ 0 and

we have

Define the sets

h--SO0

3kl ---@ O0

lira inf Ih(sk)l> 0.

A_ = {h E A_, for some ct > 0}

= {h • ,£.._, f bounded away from zero at infinity}

and the corresponding quotient algebra

_= {h=a/b,a• k_,b• k_,_}.

The assumption that b • J._,= implies that functions in 13 possess only a finite number of

unstable poles. The extension to the multivariable case is straightforward, and we define

M(B) to be the set of transfer function matrices with entries in t_l.

An extension which restricts the region of stability to Re(s) < -a is also straightforward.

The algebra ._ is replaced by A_, in the above definitions and

_l,, = {h=alb, a• ._._,b6 d_:,}.

Jacobson [13] and Jacobson and Nett [14] have shown that semigroup control systems

which are a-stabilizable and/or a-detectable have transfer functions in M(t3_). This frame-

work is thus appropriate for studying semigroup control systems using frequency domain

methods. Furthermore, every function P in M(t_,) has both a left- and a right-coprime

11



factorization over M(._). Thus Vidyasagar's graph topology is well-defined for semigroup

control systems providing they are g-stabilizable and/or -detectable.

Theorem 4.1: Suppose Fh is a sequence in M(I_,), and that F E M(]_). Then the

following statements are equivalent.

(i) {Fh} converges to F in the graph topology.

(ii) There exist a r.c.f (N,D) of F, and a sequence of r.c.f.'s (Nh, Dh) of Fh such that

Nh ---, N and Vh --* D in M(.&,,)

(iii) There exist a 1.c.f. (N,D) of F, and a sequence of 1.c.f.'s (Nh, Dh) of Fh such that

Na _ N and Oh _ D in M(._).

Proof: Since all transfer functions in M(13,_) have left and right coprime factorizations

[5], Vidyasagar's proof [21] for rational functions that convergence in the graph topology is

equivalent to convergence of coprime factorizations extends in a straightforward manner to

transfer functions in M(I3,,). []

The following result can be loosely paraphrased as follows: A family of plants Fh can be

robustly stabilized by a compensator C which stabilizes some nominal plant F if and only

if Fh converges to F in the graph topology. Furthermore, the closed loop response of the

feedback pair (Fh, C) converges to that of (F, C). In other words, the graph topology is the

weakest topology in which feedback stability is robust.

Theorem 4.2: Let Fh be a sequence of plants in M(I3_) .

(i) Suppose Fh converges to F C M(13,_) in the graph topology. Let C C M(13_) stabilize

F. Then there exists an H such that C stabilizes Fh, for all h _< H, and moreover, the

closed loop transfer matrix H(Fh, C) converges to H(F, V) in M(,_=).

(ii) Conversely, suppose there exists a C C M(I].) which stabilizes Fh for all h < H,:and

that H(Fh, G)converges to H(F,C). Then {Fh} converges to F in the graph topology.

,r

Z

Proof: Identical to that in [21]. []

This has obvious implications for controller design using approximations. Failure of a

sequence of approximations to converge in the graph topology implies that at least one of

the following must occur (1) simultaneous stabilization of Fh and F is not possible for all h

sufficiently small or (2) convergence of the closed loop response H(Fh, C) does not occur.
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Theorem 4.3: Let (A, B, C) be a a-stabilizable/detectable semigroup control system,

and suppose we have a sequence of approximations (Ah, Bh, Oh) satisfying assumptions (A1)-

(A3) of Section 2. If the system is a-stabilizable and C is any controller which stabilizes P,

then for sufficiently small H, (Ph, G) is w-stable for all h < H. Furthermore, the closed loop

response of (Ph, C) converges in norm to that of (P, C).

Proof: The theorem will be proven by using Theorem 3.3 to show that the approximate

systems (Ah, Bh, Ch) converge to (A, B, 6') in the graph topology, and then applying Theorem

4.2.

Let feedback operators K and Kh be as defined above so that Am, := Ah-BhKh generates

a g-stable semigroup Sh(_) for sufficiently small h and .4o := A - BK generates a g-stable

semigroup S(t). For small h, right g-coprime factorlzations for the approximate systems are

given by

b_(s) =/- KhR(s : Am,)Bh

where R(a : Am,) indicates the resolvent of Am, [21]. A right coprime factorization for the

original system is [13]

N(._) = CR(s : A,,)B,

.D(s) = I- gR(s : A,,)B.

The result follows if it can be shown that Nh(t) --* N(t) and Oh(t) _ D(t) in the norm

on A,,. Convergence of the numerators is proven first.

Since {,,_h(t)} converge uniformly on bounded intervals to S(t), there exist g and M > 1

such that for some 3' > a

IIS(011 _<Me-" for all t __ 0,

and

Also,

Me-" for all t > 0,

Therefore, for any e > 0 there exists _" such that

for all h _< H. (4.2)

j_v °° exp(,_t)llN(t)- N,,(t)lldt < 5" (4.3)

supIIN(t)- N,,(011_ supIlOllIIS(t)B- £,(t)BIl. (4.4)
0<t<*" 0<t<_"

It follows from Theorem 3.3 that this also approaches zero. Combining statements (4.3) and

(4.4) we see that

_m/o_ exp(,Tt)ltN(0 - N,,(t)lldt = 0

13



and so Nh converges to N on A..

The proof showing convergence of the denominators is somewhat lengthier and requires

use of a lemma in [16]. Defining

Fh(t) :- (P,n - n)&(t)P,B,

we have

Dh(t)- D(t) = Q-' B'Fh(t) + Q-1B.n[sdt)phB - S(t)B] (4.5)

_0 _
lim II e-_*Fd*)dtll
h--,0

..... ==

-< I,--.olimII(Phn- n) _0_ e-Xt_h(t)Bdtll....

_<__mll(P_II- II)n(A;Aho)BII

< lira IIPhHII(R(A;Aao)B - R(A;Ao)BII
-- h---,0

]l(Ph - I)IIR(,_; Ao)BII+

+ Ilnll II(n(),;Ao)S- R( ),;Aho)nll

= 0,

since Ph converges strongly to the identity and

lim IIn(_;_)B - n(_; Ao)BII - 0
h---,0

for all _ [18, Theorem 4.2]. The sequence will now be shown to be equicontinuous .

• 71The core C is dense in D(A) which is dense in X. Let {e,}i= t be an orthonormal basis

for R '_ and for any g > 0 define a bounded operator Gs : R _ -'+ X by

C6(ei)-- xi where zi e C and IIBe,- z, ll < 6/m.

Then Gs is a bounded linear operator with range contained in C and with -

Ila,-Bli<

Now IIA_G, II is bounded by some real Mx s_ce it converges to IIA,,GslI. Therefore,

IIFh(t+ 6) - Fh(t)ll < IIPhn- nil I1Y0s gh(t + _)Ah_Bd_ll

_ IlIIIIII_ grit + _,)_oasd_ll+

_< Ilnll II[R_(t+ 6) - &(t)](B - a,)ll.
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Let M be the constant bounding _h(t) for small h (Equation 5.2). Then

IIFh(t + 5)- Fh(_)l[ <_ 11IIII[SMM1 -t- 2M_

and for sufficiently small H and any e > 0 we can choose 6 so that

JIfh(t+ S)- Fh(t)lJ< e foran h < H.

Thus Fh is an equicontinuous family and since Fh(t) is also clearly uniformly bounded for

all t and h, it follows from [16, Lemma 2.11] that

lira sup IIfh(t)- F(t)ll= O.
h--*0 0_<t_<r

Since II and Q-1B* are bounded operators it follows from Equation (4.5) and Theorem 3.3

that

lim sup [[Dh(t) - D(t)[[ = O.
h--*0 0_<t_<_-

Finally, the remainder of the proof of convergence of Dh(t) to D(t) follows as for the numer-

ators (4.3).

Convergence in the graph topology follows from Theorem 4.1. The conclusions of the

theorem then follow from Theorem 4.2. []

The result is independent of the technique used for stabilization, and does not require

any assumptions on the stabilizability or detectability of the approximations. For instance,

let (Nh, Dh) be a a-stable r.c.f, of an approximating plant and choose X, Y E M(_&,,) such

that

XNh + YDh = I.

Then if the original plant is close enough to the approximation so that, for some r.c.f of the

original plant, (N, D),

II I1N- Nh < (4._)
D- Dh ]IX Y]I'

then, any controller designed using the approximating plant will stabilize the original plant.

Furthermore, the closed-loop responses will be close in norm, and the system will be internally

a-stable. The difficult part, of course, is determining whether (4.6) is satisfied.

5. Conclusions

The above results validate the use of Galerkin type approximations in controller design

for infinite-dimensional systems, regardless of the control technique, and with very weak

assumptions on the approximation method. The key assumption is that of stabilizability/
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detectability of the semigroup control system which supports the work of Jacobson and Nett

[14] indicating the importance of this property in control of infinite-dimensional systems.

A high order Galerldn model can be chosen and used to design a controller using lumped

parameter techniques. If the objective is optimal state feedback, then convergence of the

Kalman gains can be used as a criterion. Otherwise, robustness of the approximate plant with

respect to the original inflnite-dimensional system can be estimated before any controller is

implemented by either (1) comparison of coprlme factors (if available) or (2) determination

that the sequence of approximations has converged satisfactorily. Several possible criteria are

given in [21] and [11]. An open problem is determining when the approximation order is high

enough for satisfactory controller design. Since exact transfer functions will be unavailable

for most practical problems, a useful result would be the rate of convergence of the coprime

factors, compared to that of the numerical scheme.

A subsequent paper will extend the results in this paper to discrete time approximation

schemes.
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